organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

3-[2-(3-Methyl-2-oxo-1,2-dihydroquinoxalin-1-yl)ethyl]oxazolidin-2-one

Ahoya Anothane Caleb,^a Rachid Bouhfid,^a El Mokhtar Essassi^a and Lahcen El Ammari^{b*}

^aLaboratoire de Chimie Organique Hétérocyclique, Pôle de Compétences, Pharmacochimie, Av Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V-Agdal, Rabat, Morocco, and ^bLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco

Correspondence e-mail: Lelammari@fsr ac ma Received 29 June 2009; accepted 20 July 2009

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.002 Å; R factor = 0.050; wR factor = 0.157; data-to-parameter ratio = 20.1.

The title heterocyclic compound, C₁₄H₁₅N₃O₃, is a new synthetic molecule containing oxazolidine and quinoxaline rings. It is built up from two fused six-membered rings linked to a five-membered oxazolidin-2-one ring by a C₂ chain. Both ring systems are essentially planar [maximum deviation = 0.894 (3) Å, r.m.s. deviation = 0.0043 Å]. The structure is held together by van der Waals forces [electrostatic interactions between dipoles, $O \cdot \cdot \cdot C = 3.002$ (2) Å between molecules and by weak π - π stacking between symmetry-related molecules, with an interplanar distance of 3.579 Å and a centroidcentroid distance of 3.800 (1) Å. Intermolecular $C-H \cdots O$ hydrogen bonds are also observed in the crystal structure.

Related literature

For the biological activity of 3-2(-(3-methyl-2-oxoquinoxalin-1(2H)-vl) ethvl)oxazolidin-2-one, see: Ferfra (2001); Habib & El-hawash (1997); Romer et al. (1995). For pharmaceutical agrochemicals, see: Badran et al. (2003); Madhusudhan et al. (2004); Soad et al. (2006); Sriharsha & Shashikanth (2006); Sarro et al. (2002). For a related structure, see: Doubia et al. (2007).

Experimental

Crystal data

$C_{14}H_{15}N_3O_3$	$V = 2628.3 (11) \text{ A}^3$
$M_r = 273.29$	Z = 8
Monoclinic, $C2/c$	Mo $K\alpha$ radiation
a = 12.280 (3) Å	$\mu = 0.10 \text{ mm}^{-1}$
b = 10.736 (3) Å	$T = 298 { m K}$
c = 20.406 (4) Å	$0.28 \times 0.17 \times 0.12 \text{ mm}$
$\beta = 102.32 \ (1)^{\circ}$	

Data collection

Bruker X8 APEXII CCD areadetector diffractometer Absorption correction: none 21237 measured reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.050$	H atoms treated by a mixture of
$wR(F^2) = 0.157$	independent and constrained
S = 1.04	refinement
4108 reflections	$\Delta \rho_{\rm max} = 0.29 \text{ e} \text{ Å}^{-3}$
204 parameters	$\Delta \rho_{\rm min} = -0.24 \text{ e } \text{\AA}^{-3}$

4108 independent reflections

 $R_{\rm int} = 0.033$

2727 reflections with $I > 2\sigma(I)$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\overline{\begin{array}{c} C7-H5\cdots O3^{i}\\ C10-H10A\cdots O3^{i}\end{array}}$	0.98 (2)	2.54 (2)	3.462 (2)	157 (2)
	0.97	2.43	3.348 (2)	157

Symmetry code: (i) -x, y, $-z + \frac{1}{2}$.

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for making possible the present work. They also thank Professors B. Jaber and M. Benaissa for useful discussions and H. Zouihri for his technical assistance during the X-ray measurements.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2233).

References

- Badran, M. M., Abouzid, K. A. M. & Hussein, M. H. M. (2003). Arch. Pharm. Res. Part II, 26, 107-113.
- Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Doubia, M. L., Bouhfid, R., Ahabchane, N. H., Essassi, E. M. & El Ammari, L. (2007). Acta Cryst. E63, 03305.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Ferfra, S. (2001). Thèse de Doctorat d'État Université Mohammed V, Agdal, Faculté des Sciences Rabat, Morocco.
- Habib, N. S. & El-hawash, S. A. (1997). Pharmazie, 52, 750-753.

Madhusudhan, G., Om Reddy, G., Ramanathan, J. & Dubey, P. K. (2004). Indian J. Chem. Sect. B, 43, 957-963.

- Romer, D. R., Aldrich, B. L., Pews, R. G. & Walter, R. W. (1995). Pestic. Sci. 43, 263–266.
- Sarro, G. De., Ferreri, G., Gareri, P., Russo, E., Sarro, A. De., Gitto, R. & Chimiri, A. (2002). *Pharmacol. Biochem. Behav.* 74, 595–602.Sheldrick, G. M. (2008). *Acta Cryst.* A64, 112–122.
- Soad, A. M., El-Hawash, S. A., Abeer, E. & Wahab, A. (2006). Arch. Pharm. Res. 339, 437–447.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Sriharsha, S. N. & Shashikanth, S. J. (2006). Heterocycl. Commun. 12, 213–218.

supplementary materials

Acta Cryst. (2009). E65, o2024-o2025 [doi:10.1107/S1600536809028736]

3-[2-(3-Methyl-2-oxo-1,2-dihydroquinoxalin-1-yl)ethyl]oxazolidin-2-one

A. A. Caleb, R. Bouhfid, E. M. Essassi and L. El Ammari

Comment

The heterocyclic compounds to 5 or 6 Chains occupying a capital in fields as varied, quinoxalines pharmacy (Madhusudhan *et al.* 2004 and Sarro *et al.*2002) in agrochemicals (Romer *et al.* 1995, Habib *et al.* 1997) biology (Ferfra 2001)*etc.* The quinoxalines and the oxazolidines are subjets of numerous articles in describing the synthesis of new derivatives presentery antibacterial properties (Badran *et al.* 2003, Sriharsha *et al.* 2006) and anti tumor (Soad *et al.* 2006). We describe here the synthesis of compound 3 to side of the compound 2 per share on the dichlorodiéthylmine quinoxaline-2-one fusion as show in the chemical structural diagram (Fig.1).

The 3-2(-(3-methyl-2-oxoquinoxalin-1(2H)-yl)ethyl)oxazolidin-2-one (I) molecule structure is built up from two fused six-membered rings linked to a five-membered ring (oxazolidin-2-one) by an ethylic groupe. The both rings are essentially planar and forms a dihedral angle of 20.46 (6)° with the oxazolidin-2-one ring. The molecular structure of (I) is shown in Fig.2. The geometric parameters (bond lenghths and angles) are very similar to those observed in previously reported structures (Doubia*et al.*2007).

An intermolecular C—H···O hydrogen bond is observed in the cristal structure as shown in the partial plot of the structure (Fig.3). Furthermore, the structure is stabilized by Van der Waals forces and together by weak slipped π - π stzcking between symmetry related molecules (C to C ring) with interplanar distance of 3.579 Å and centroid to centroid vector of 3.800 (1) Å.

Experimental

It reacted 0.0125 moles of quinoxaline-2-one with 2.66 moles of dichlorodiéthylamine in 40 ml dimethyl formamide in the presence of 2.87 moles of K_2CO_3 and a few milligrams of BTBA. The mixture was brought to reflux in a bath of sand magnetic stirring for 6 h. After vacuum concentration, the separation of compounds was done by column chromatography eluant 4 / 6(hexane - ethyl acetate). Recrystallization occurred in the same eluent. This compound was obtained in 60% and his melting point is 175°C.

Refinement

All H atoms were located in a difference map and refined without any distance restraints.

Figures

Fig. 1. : Schematic of the chemical reaction leading to the title compound.

Fig. 2. : Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small small circles.

Fig. 3. : Partial packing view showing the C—H…O interactions (dashed lines).

$\label{eq:2-1} 3-[2-(3-Methyl-2-oxo-1,2-dihydroquinoxalin-1-yl)ethyl] oxazolidin-2-one$

Crystal data	
$C_{14}H_{15}N_{3}O_{3}$	$F_{000} = 1152$
$M_r = 273.29$	$D_{\rm x} = 1.381 {\rm ~Mg~m}^{-3}$
Monoclinic, $C2/c$	Melting point: 448 K
Hall symbol: -C 2yc	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 12.280 (3) Å	Cell parameters from 21279 reflections
b = 10.736 (3) Å	$\theta = 2.6 - 30.9^{\circ}$
c = 20.406 (4) Å	$\mu = 0.10 \text{ mm}^{-1}$
$\beta = 102.32 \ (1)^{\circ}$	T = 298 K
$V = 2628.3 (11) \text{ Å}^3$	Prism, colourless
Z = 8	$0.28\times0.17\times0.12~mm$
Data collection	

Bruker X8 APEXII CCD area-detector diffractometer	2727 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.033$
T = 298 K	$\theta_{\text{max}} = 30.9^{\circ}$
ϕ and ω scans	$\theta_{\min} = 2.6^{\circ}$
Absorption correction: none	$h = -17 \rightarrow 17$
21237 measured reflections	$k = -15 \rightarrow 15$
4108 independent reflections	$l = -26 \rightarrow 29$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.050$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.157$	$w = 1/[\sigma^2(F_o^2) + (0.081P)^2 + 0.6684P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.04	$(\Delta/\sigma)_{\rm max} = 0.001$
4108 reflections	$\Delta \rho_{max} = 0.29 \text{ e} \text{ Å}^{-3}$
204 parameters	$\Delta \rho_{\rm min} = -0.24 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	Extinction correction: none

methods returned a structure invariant direct Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

O1 $0.11176(11)$ $0.25753(10)$ $0.54216(6)$ $0.0630(3)$ O2 $-0.13309(10)$ $0.52714(11)$ $0.26113(5)$ $0.0598(3)$ O3 $-0.13793(10)$ $0.32026(12)$ $0.24503(6)$ $0.0662(4)$ N1 $0.11384(8)$ $0.15986(10)$ $0.44405(5)$ $0.0353(2)$ N2 $0.16192(10)$ $-0.06171(10)$ $0.51654(5)$ $0.0422(3)$ N3 $-0.06491(10)$ $0.40729(10)$ $0.34753(5)$ $0.0411(3)$ C1 $0.12314(11)$ $0.16145(12)$ $0.51219(6)$ $0.0387(3)$ C2 $0.14895(11)$ $0.04062(12)$ $0.44748(6)$ $0.0385(3)$		x	У	Z	$U_{\rm iso}*/U_{\rm eq}$
O2 -0.13309 (10) 0.52714 (11) 0.26113 (5) 0.0598 (3) O3 -0.13793 (10) 0.32026 (12) 0.24503 (6) 0.0662 (4) N1 0.11384 (8) 0.15986 (10) 0.44405 (5) 0.0353 (2) N2 0.16192 (10) -0.06171 (10) 0.51654 (5) 0.0422 (3) N3 -0.06491 (10) 0.40729 (10) 0.34753 (5) 0.0411 (3) C1 0.12314 (11) 0.16145 (12) 0.51219 (6) 0.0387 (3) C2 0.14895 (11) 0.04062 (12) 0.54680 (6) 0.0385 (3)	01	0.11176 (11)	0.25753 (10)	0.54216 (6)	0.0630(3)
O3 -0.13793 (10) 0.32026 (12) 0.24503 (6) 0.0662 (4) N1 0.11384 (8) 0.15986 (10) 0.44405 (5) 0.0353 (2) N2 0.16192 (10) -0.06171 (10) 0.51654 (5) 0.0422 (3) N3 -0.06491 (10) 0.40729 (10) 0.34753 (5) 0.0411 (3) C1 0.12314 (11) 0.16145 (12) 0.51219 (6) 0.0387 (3) C2 0.14895 (11) 0.04062 (12) 0.54680 (6) 0.0385 (3)	O2	-0.13309 (10)	0.52714 (11)	0.26113 (5)	0.0598 (3)
N1 0.11384 (8) 0.15986 (10) 0.44405 (5) 0.0353 (2) N2 0.16192 (10) -0.06171 (10) 0.51654 (5) 0.0422 (3) N3 -0.06491 (10) 0.40729 (10) 0.34753 (5) 0.0411 (3) C1 0.12314 (11) 0.16145 (12) 0.51219 (6) 0.0387 (3) C2 0.14895 (11) 0.04062 (12) 0.54680 (6) 0.0385 (3)	O3	-0.13793 (10)	0.32026 (12)	0.24503 (6)	0.0662 (4)
N2 $0.16192 (10)$ $-0.06171 (10)$ $0.51654 (5)$ $0.0422 (3)$ N3 $-0.06491 (10)$ $0.40729 (10)$ $0.34753 (5)$ $0.0411 (3)$ C1 $0.12314 (11)$ $0.16145 (12)$ $0.51219 (6)$ $0.0387 (3)$ C2 $0.14895 (11)$ $0.04062 (12)$ $0.54680 (6)$ $0.0385 (3)$ C3 $0.15129 (10)$ $0.05049 (12)$ $0.44748 (6)$ $0.0275 (2)$	N1	0.11384 (8)	0.15986 (10)	0.44405 (5)	0.0353 (2)
N3 -0.06491 (10) 0.40729 (10) 0.34753 (5) 0.0411 (3) C1 0.12314 (11) 0.16145 (12) 0.51219 (6) 0.0387 (3) C2 0.14895 (11) 0.04062 (12) 0.54680 (6) 0.0385 (3) C2 0.15128 (10) 0.05048 (12) 0.44748 (6) 0.0275 (2)	N2	0.16192 (10)	-0.06171 (10)	0.51654 (5)	0.0422 (3)
C1 0.12314 (11) 0.16145 (12) 0.51219 (6) 0.0387 (3) C2 0.14895 (11) 0.04062 (12) 0.54680 (6) 0.0385 (3) C3 0.15128 (10) 0.05048 (12) 0.44748 (0) 0.0275 (2)	N3	-0.06491 (10)	0.40729 (10)	0.34753 (5)	0.0411 (3)
C2 0.14895 (11) 0.04062 (12) 0.54680 (6) 0.0385 (3) C2 0.15128 (10) 0.05048 (12) 0.44748 (C) 0.0275 (2)	C1	0.12314 (11)	0.16145 (12)	0.51219 (6)	0.0387 (3)
C_2 0.15128 (10) 0.05048 (12) 0.44748 (() 0.0275 (2)	C2	0.14895 (11)	0.04062 (12)	0.54680 (6)	0.0385 (3)
$C_{5} \qquad 0.15128(10) \qquad -0.05948(12) \qquad 0.44748(6) \qquad 0.0375(3)$	C3	0.15128 (10)	-0.05948 (12)	0.44748 (6)	0.0375 (3)
C4 0.16612 (13) -0.17122 (14) 0.41519 (8) 0.0499 (4)	C4	0.16612 (13)	-0.17122 (14)	0.41519 (8)	0.0499 (4)
H4 0.1830 (15) -0.2426 (16) 0.4433 (9) 0.064 (5)*	H4	0.1830 (15)	-0.2426 (16)	0.4433 (9)	0.064 (5)*
C5 0.15685 (13) -0.17446 (16) 0.34713 (8) 0.0550 (4)	C5	0.15685 (13)	-0.17446 (16)	0.34713 (8)	0.0550 (4)
H5 0.0990 (14) 0.1222 (17) 0.3136 (8) 0.061 (5)*	H5	0.0990 (14)	0.1222 (17)	0.3136 (8)	0.061 (5)*
C6 0.13209 (13) -0.06520 (17) 0.31028 (8) 0.0524 (4)	C6	0.13209 (13)	-0.06520 (17)	0.31028 (8)	0.0524 (4)
H6 0.1300 (16) -0.0693 (17) 0.2637 (11) 0.070 (6)*	H6	0.1300 (16)	-0.0693 (17)	0.2637 (11)	0.070 (6)*
C7 0.11673 (12) 0.04585 (15) 0.34045 (7) 0.0452 (3)	C7	0.11673 (12)	0.04585 (15)	0.34045 (7)	0.0452 (3)
H7 0.1688 (16) -0.2533 (17) 0.3259 (9) 0.064 (5)*	H7	0.1688 (16)	-0.2533 (17)	0.3259 (9)	0.064 (5)*

supplementary materials

C8	0.12719 (10)	0.05051 (11)	0.40996 (6)	0.0341 (3)
С9	0.15977 (14)	0.04223 (15)	0.62100 (7)	0.0522 (4)
H9A	0.1775	-0.0400	0.6386	0.090*
H9B	0.0907	0.0690	0.6313	0.080*
H9C	0.2181	0.0987	0.6409	0.071 (6)*
C10	0.08780 (11)	0.27856 (12)	0.40844 (7)	0.0414 (3)
H10A	0.1230	0.2811	0.3702	0.053 (4)*
H10B	0.1171	0.3469	0.4381	0.047 (4)*
C11	-0.03761 (11)	0.29325 (13)	0.38470 (7)	0.0457 (3)
H11A	-0.0670	0.2231	0.3565	0.062 (5)*
H11B	-0.0723	0.2934	0.4232	0.069 (5)*
C12	-0.0550 (2)	0.52845 (15)	0.37655 (9)	0.0767 (6)
H12A	0.0221	0.5485	0.3962	0.090*
H12B	-0.0990	0.5361	0.4106	0.088*
C13	-0.10029 (16)	0.61022 (15)	0.31685 (9)	0.0625 (5)
H13A	-0.1637	0.6578	0.3242	0.081 (6)*
H13B	-0.0435	0.6676	0.3088	0.089 (7)*
C14	-0.11293 (11)	0.40817 (14)	0.28215 (7)	0.0429 (3)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0931 (9)	0.0442 (6)	0.0505 (6)	0.0055 (6)	0.0130 (6)	-0.0100 (5)
O2	0.0708 (8)	0.0578 (7)	0.0454 (6)	0.0030 (5)	0.0000 (5)	0.0146 (5)
O3	0.0708 (8)	0.0718 (8)	0.0502 (6)	0.0112 (6)	0.0005 (5)	-0.0246 (6)
N1	0.0362 (5)	0.0336 (5)	0.0352 (5)	0.0005 (4)	0.0053 (4)	0.0056 (4)
N2	0.0472 (6)	0.0398 (6)	0.0353 (6)	-0.0030 (5)	-0.0010 (4)	0.0057 (4)
N3	0.0502 (7)	0.0332 (5)	0.0361 (6)	0.0048 (4)	0.0009 (5)	0.0017 (4)
C1	0.0397 (6)	0.0385 (6)	0.0363 (6)	-0.0027 (5)	0.0048 (5)	-0.0001 (5)
C2	0.0369 (6)	0.0425 (7)	0.0329 (6)	-0.0078 (5)	0.0005 (5)	0.0033 (5)
C3	0.0360 (6)	0.0370 (6)	0.0368 (6)	0.0008 (5)	0.0016 (5)	0.0028 (5)
C4	0.0525 (8)	0.0400 (7)	0.0528 (8)	0.0061 (6)	0.0013 (6)	-0.0023 (6)
C5	0.0513 (9)	0.0561 (9)	0.0557 (9)	0.0062 (7)	0.0075 (7)	-0.0160 (7)
C6	0.0475 (8)	0.0734 (11)	0.0373 (7)	0.0010(7)	0.0110 (6)	-0.0072 (7)
C7	0.0434 (7)	0.0566 (8)	0.0360 (7)	0.0010 (6)	0.0091 (5)	0.0063 (6)
C8	0.0289 (6)	0.0381 (6)	0.0345 (6)	0.0004 (4)	0.0050 (4)	0.0036 (5)
C9	0.0595 (9)	0.0622 (9)	0.0319 (6)	-0.0168 (7)	0.0030 (6)	0.0035 (6)
C10	0.0425 (7)	0.0341 (6)	0.0463 (7)	-0.0008 (5)	0.0066 (5)	0.0103 (5)
C11	0.0426 (7)	0.0387 (7)	0.0533 (8)	0.0001 (5)	0.0044 (6)	0.0121 (6)
C12	0.1231 (18)	0.0380 (8)	0.0533 (10)	0.0076 (9)	-0.0162 (10)	-0.0075 (7)
C13	0.0684 (11)	0.0380 (8)	0.0734 (11)	0.0008 (7)	-0.0019 (8)	0.0086 (7)
C14	0.0399 (7)	0.0513 (8)	0.0368 (6)	0.0074 (6)	0.0067 (5)	-0.0016 (6)

Geometric parameters (Å, °)

O1—C1	1.2223 (17)	С5—Н7	0.976 (19)
O2—C14	1.3532 (18)	C6—C7	1.373 (2)
O2—C13	1.434 (2)	С6—Н6	0.95 (2)
O3—C14	1.2080 (18)	С7—С8	1.3975 (18)

N1—C1	1.3708 (16)	С7—Н5	0.984 (18)
N1—C8	1.3921 (16)	С9—Н9А	0.9600
N1—C10	1.4680 (16)	С9—Н9В	0.9600
N2—C2	1.2868 (18)	С9—Н9С	0.9600
N2—C3	1.3874 (17)	C10—C11	1.5208 (19)
N3—C14	1.3387 (17)	C10—H10A	0.9700
N3—C12	1.4237 (19)	C10—H10B	0.9700
N3—C11	1.4415 (16)	C11—H11A	0.9700
C1—C2	1.4787 (18)	C11—H11B	0.9700
С2—С9	1.4915 (19)	C12—C13	1.508 (2)
C3—C4	1.3991 (19)	C12—H12A	0.9700
C3—C8	1.4041 (17)	C12—H12B	0.9700
C4—C5	1.369 (2)	C13—H13A	0.9700
C4—H4	0.953 (17)	C13—H13B	0.9700
C5—C6	1.392 (2)		
C14—O2—C13	109.55 (11)	С2—С9—Н9В	109.5
C1—N1—C8	121.61 (10)	Н9А—С9—Н9В	109.5
C1—N1—C10	116.97 (11)	С2—С9—Н9С	109.5
C8—N1—C10	121.42 (10)	Н9А—С9—Н9С	109.5
C2—N2—C3	118.58 (11)	Н9В—С9—Н9С	109.5
C14—N3—C12	112.86 (11)	N1-C10-C11	110.28 (10)
C14—N3—C11	122.27 (11)	N1-C10-H10A	109.6
C12—N3—C11	124.57 (12)	С11—С10—Н10А	109.6
01—C1—N1	121.63 (12)	N1-C10-H10B	109.6
01—C1—C2	122.48 (12)	C11—C10—H10B	109.6
N1—C1—C2	115.89 (11)	H10A—C10—H10B	108.1
N2—C2—C1	123.75 (11)	N3—C11—C10	111.20 (11)
N2—C2—C9	120.25 (12)	N3—C11—H11A	109.4
C1—C2—C9	116.00 (12)	C10-C11-H11A	109.4
N2—C3—C4	118.03 (12)	N3—C11—H11B	109.4
N2—C3—C8	122.11 (12)	C10-C11-H11B	109.4
C4—C3—C8	119.85 (12)	H11A—C11—H11B	108.0
C5—C4—C3	120.55 (14)	N3—C12—C13	102.23 (13)
C5—C4—H4	123.4 (11)	N3—C12—H12A	111.3
C3—C4—H4	116.1 (11)	C13—C12—H12A	111.3
C4—C5—C6	119.21 (14)	N3—C12—H12B	111.3
С4—С5—Н7	119.0 (11)	C13—C12—H12B	111.3
С6—С5—Н7	121.8 (11)	H12A—C12—H12B	109.2
C7—C6—C5	121.64 (14)	O2-C13-C12	105.73 (13)
С7—С6—Н6	120.9 (11)	O2-C13-H13A	110.6
С5—С6—Н6	117.4 (11)	C12—C13—H13A	110.6
C6—C7—C8	119.63 (14)	O2-C13-H13B	110.6
С6—С7—Н5	120.6 (10)	С12—С13—Н13В	110.6
С8—С7—Н5	119.8 (10)	H13A—C13—H13B	108.7
N1—C8—C7	122.83 (12)	O3—C14—N3	128.19 (14)
N1—C8—C3	118.06 (11)	O3—C14—O2	122.27 (13)
C7—C8—C3	119.10 (12)	N3—C14—O2	109.53 (12)
С2—С9—Н9А	109.5		

supplementary materials

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
C7—H5···O3 ⁱ	0.98 (2)	2.54 (2)	3.462 (2)	157 (2)
C10—H10A····O3 ⁱ	0.97	2.43	3.348 (2)	157
Symmetry codes: (i) $-x$, y , $-z+1/2$.				

Fig. 1

Fig. 2

